(matching type) given f(x)= x+4 and g(x) = 2x + 1 match the expression to its simplication operation


choose


x+4 / 2x+1

Answer 1

Choose...

f of g

f/g

f - g

f∙g

g/f

f + g

2x+1 / x+4

Answer 2

Choose...

f of g

f/g

f - g

f∙g

g/f

f + g

3x + 5

Answer 3

Choose...

f of g

f/g

f - g

f∙g

g/f

f + g

2x + 5

Answer 4

Choose...

f of g

f/g

f - g

f∙g

g/f

f + g

-x + 3

Answer 5

Choose...

f of g

f/g

f - g

f∙g

g/f

f + g

2x2 + 9x + 12



pa help po

Respuesta :

Answer:

1) [tex]h(x) = \frac{f(x)}{g(x)}[/tex], 2) [tex]h(x) = \frac{g(x)}{f(x)}[/tex], 3) [tex]h(x) = f(x) + g(x)[/tex], 4) [tex]h (x) = f [g (x)][/tex], 5) [tex]h(x) = f(x) - g(x)[/tex]

Step-by-step explanation:

1) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h (x) = \frac{x+4}{2\cdot x + 1}[/tex], then:

[tex]h(x) = \frac{f(x)}{g(x)}[/tex]

2) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = \frac{2\cdot x + 1}{x+4}[/tex], then:

[tex]h(x) = \frac{g(x)}{f(x)}[/tex]

3) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = 3\cdot x + 5[/tex], then:

[tex]h(x) = 3\cdot x + 5[/tex]

[tex]h (x) = (1 + 2)\cdot x + (4+1)[/tex]

[tex]h(x) = x + 2\cdot x + 4 +1[/tex]

[tex]h(x) = (x+4) + (2\cdot x + 1)[/tex]

[tex]h(x) = f(x) + g(x)[/tex]

4) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = 2\cdot x + 5[/tex], then:

[tex]h(x) = 2\cdot x + 5[/tex]

[tex]h(x) = 2\cdot x + 1 + 4[/tex]

[tex]h(x) = (2\cdot x +1)+4[/tex]

[tex]h (x) = f [g (x)][/tex]

5) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = -x + 3[/tex], then:

[tex]h(x) = -x + 3[/tex]

[tex]h(x) = (1 - 2)\cdot x + 4 - 1[/tex]

[tex]h(x) = x - 2\cdot x + 4 - 1[/tex]

[tex]h(x) = x + 4 - (2\cdot x + 1)[/tex]

[tex]h(x) = f(x) - g(x)[/tex]