Respuesta :
Answer:
Margin of error M.E = 7.51
The 95% Confidence interval is = 318.6+/-7.51
= (311.09, 326.11)
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
x+/-M.E
Given that;
M.E = margin of error
Mean x = 318.6
Standard deviation r = 29.2
Number of samples n = 58
Confidence interval = 95%
z(at 95% confidence) = 1.96
Substituting the values we have;
318.6+/-1.96(29.2/√58)
318.6+/-1.96(3.834147839503)
318.6+/-7.514929765427
318.6+/-7.51
Margin of error M.E = 7.51
The 95% Confidence interval is = 318.6+/-7.51
= (311.09, 326.11)
The margin of error is 7.5149.
Given that;
Mean = μ = 318.6
Standard deviation = σ = 29.2
Number of samples = n = 58
Confidence interval = 95%
z(at 95% confidence) = 1.96
We have to find M.E = margin of error = ?
[tex]z\cdot\frac{\sigma}{\sqrt{n}}\\=1.96\cdot\frac{29.2}{\sqrt{58}}\\=7.5149[/tex]
Learn more: https://brainly.com/question/19977250