Respuesta :
Answer:
[tex]m=-5[/tex]
Step-by-step explanation:
[tex]\left(\frac{3}{5}\right)^{-3}\left(\frac{5}{3}\right)^{11}=\left(\frac{3}{5}\right)^{3m+1}\\\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)\\\ln \left(\left(\frac{3}{5}\right)^{-3}\left(\frac{5}{3}\right)^{11}\right)=\ln \left(\left(\frac{3}{5}\right)^{3m+1}\right)\\\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)[/tex]
[tex]\ln \left(\left(\frac{3}{5}\right)^{3m+1}\right)=\left(3m+1\right)\ln \left(\frac{3}{5}\right)\\\ln \left(\left(\frac{3}{5}\right)^{-3}\left(\frac{5}{3}\right)^{11}\right)=\left(3m+1\right)\ln \left(\frac{3}{5}\right)\\\mathrm{Solve\:}\:\ln \left(\left(\frac{3}{5}\right)^{-3}\left(\frac{5}{3}\right)^{11}\right)=\left(3m+1\right)\ln \left(\frac{3}{5}\right):\quad m=\frac{14\ln \left(5\right)-14\ln \left(3\right)-\ln \left(\frac{3}{5}\right)}{3\ln \left(\frac{3}{5}\right)}[/tex]
[tex]m=\frac{14\ln \left(5\right)-14\ln \left(3\right)-\ln \left(\frac{3}{5}\right)}{3\ln \left(\frac{3}{5}\right)}\\\mathrm{Decimal}:\quad m=-5[/tex]