Respuesta :

Answer:

[tex]C \approx 91.732^{\circ}[/tex]

Step-by-step explanation:

(This exercise is presented in Spanish and for that reason explanation will be held in such language)

El lado restante se determina por la Ley del Coseno:

[tex]a = \sqrt{b^{2}+c^{2}-2\cdot b\cdot c \cdot \cos A}[/tex]

[tex]a = \sqrt{5.79^{2}+10.4^{2}-2\cdot (5.79)\cdot (10.4)\cdot \cos 54.46^{\circ}}[/tex]

[tex]a \approx 8.466[/tex]

Finalmente, el angulo C se halla por medio de la misma ley:

[tex]\cos C = - \frac{c^{2}-a^{2}-b^{2}}{2\cdot a \cdot b}[/tex]

[tex]\cos C = -\frac{10.4^{2}-8.466^{2}-5.79^{2}}{2\cdot (8.466)\cdot (5.79)}[/tex]

[tex]\cos C = -0.030[/tex]

[tex]C \approx 91.732^{\circ}[/tex]