Answer:
(See explanation for further details).
Step-by-step explanation:
C) The linear system is:
[tex](-1)^{2} \cdot a + (-1)\cdot b + c = 5[/tex]
[tex]c = - 4[/tex]
[tex](4)^{2}\cdot a + (4)\cdot b + c = 0[/tex]
After some algebraic handling:
[tex]a - b + c = 5[/tex]
[tex]c = -4[/tex]
[tex]16\cdot a + 4\cdot b + c = 0[/tex]
By direct substitution:
[tex]a - b - 4 = 5[/tex]
[tex]16\cdot a + 4\cdot b - 4 = 0[/tex]
[tex]a - b = 9[/tex]
[tex]4\cdot a + b = 1[/tex]
[tex]a = 9 + b[/tex]
[tex]4\cdot (9+b)+b = 1[/tex]
[tex]36 + 5\cdot b = 1[/tex]
[tex]5\cdot b = -35[/tex]
[tex]b = -7[/tex]
[tex]a = 2[/tex]
D) The parameter values are: [tex]a = 2[/tex], [tex]b = -7[/tex], [tex]c = -4[/tex]
E) The quadratic equation is [tex]y = 2\cdot x^{2} - 7\cdot x -4[/tex]