Respuesta :

Given:

Height of a cone = 50 m

Volume of cone = 5400π

To find:

The radius of the cone

Solution:

Volume of cone:

[tex]$V=\frac{1}{3}\pi r^2h[/tex]

[tex]$\frac{1}{3}\pi r^2h=5400\pi[/tex]

Cancel common factor π on both sides.

[tex]$\frac{1}{3} r^2h=5400[/tex]

Substitute h = 50.

[tex]$\frac{1}{3}\times r^2\times 50=5400[/tex]

Multiply by 3 on both sides.

[tex]$3 \times \frac{1}{3}\times r^2\times 50=5400\times 3[/tex]

[tex]$ r^2\times 50=16200[/tex]

Divide by 50 on both sides, we get

[tex]r^2=324[/tex]

Taking square root on both sides, we get

[tex]r=18[/tex]

The radius of the cone is 18 m.