Respuesta :

Given:

Points on the line are (-2, 4) and (-4, -8).

To find:

The equation of a line.

Solution:

[tex]x_1=-2, y_1=4, x_2=-4, y_2=-8[/tex]

Slope of the line:

[tex]$m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Substitute the given points.

[tex]$m=\frac{-8-4}{-4-(-2)}[/tex]

[tex]$m=\frac{-12}{-4+2}[/tex]

[tex]$m=\frac{-12}{-2}[/tex]

m = 6

Point-slope formula:

[tex]y-y_1=m(x-x_1)[/tex]

Substitute [tex]x_1=-2, y_1=4[/tex] and m = 6

[tex]y-4=6(x-(-2))[/tex]

y - 4 = 6(x + 2)

Substitute [tex]x_1=-4, y_1=-8[/tex] and m =6 in point-slope formula.

[tex]y-(-8)=6(x-(-4))[/tex]

y + 8 = 6(x + 4)

Option A and Option D are the correct answers.

Therefore y - 4 = 6(x + 2) and y + 8 = 6(x + 4) are the equations describes the shown line.