increase Polymer strain to failure is given below.
Explanation:
Strain to failure gives the measure of how much the specimen is elongated to failure. By this it means that, it you have strain to failure of 3% measured in specimen of length 100 mm, the material will fail when it it elongated 3 mm, as experimented in tensile test. Therefore, for a material with higher strain to failure rate, the ductility is higher and tensile strength is lower.
Tensile strength means the maximum mechanical stress (i.e. applied force divided by (initial) cross-section area of the specimen tested) during a tensile test, which is not directly correlated to the deformability or strain at failure or break since the tensile strength also is affected by the stiffness of the material. Therefore a ductile material might deform on a lower mechanical stress level than a stiffer one (this is the usual case), meaning its tensile strength is lower although its deformability is higher.
Therefore, for a material with higher strain to failure rate, the ductility is higher and tensile strength is lower.