Find the surface area of the prism. A drawing of a right triangular prism. The triangular faces have perpendicular sides 5 centimeters and 12 centimeters and the third side is 13 centimeters. The height of the prism is 16 centimeters.

Respuesta :

Answer:

The surface Area of the prism is 540 square centimeters.

Step-by-step explanation:

Given:

Base side [tex]a[/tex] = 5 cm

Base side [tex]b[/tex] = 13 cm

Base side [tex]c[/tex] = 12 cm

Height of the prism [tex]h[/tex] = 16 cm

We need to find the surface area of the prism.

Solution:

Now we know that;

Given prism is a right angled triangular prism.

The formula for Surface area of triangular prism is given by;

[tex]A=2A_B+(a+b+c)h[/tex]

where [tex]A_B[/tex] ⇒ Lateral Surface area.

[tex]A_B=\sqrt{s(s-a)(s-b)(s-c)}[/tex]

[tex]s=\frac{a+b+c}{2}[/tex]

First we will find the value of 's'.

[tex]s= \frac{a+b+c}{2} =\frac{5+12+13}{2}=\frac{30}{2}=15[/tex]

Now we will find [tex]A_B[/tex]

[tex]A_B=\sqrt{s(s-a)(s-b)(s-c)}\\\\A_B= \sqrt{15(15-5)(15-13)(15-12)}\\\\A_B= \sqrt{15\times 10\times2\times3}\\\\A_B=\sqrt{900}\\ \\A_B=30\ cm^2[/tex]

Now we will find the surface area of the prism [tex]A[/tex]

[tex]A=2A_B+(a+b+c)h[/tex]

[tex]A = 2\times 30+(5+13+12)16\\\\A=60+30\times 16\\\\A=60+480\\\\A=540\ cm^2[/tex]

Hence The surface Area of the prism is 540 square centimeters.