The atoms in barium metal are arranged in a bodycentered cubic unit cell. Calculate the radius of a barium atom if the density of barium is 3.50 g?cm23 . Hint: Use your answer to Exercise 4.18.

Respuesta :

The radius of a barium atom is  r = 2.19  [tex]\times[/tex] 10^-8

Explanation:

The atomic weight of barium is 137.34.

The body-centered cubic structure has two atoms per unit cell.

Therefore, the mass of Ba in a unit cell is calculated as,

                        [tex]m =[/tex]  [tex]\frac{2 \times 137.34}{6.023 \times 10^2^3}[/tex]

                       [tex]m = 4.56 \times 10^{-22} g[/tex]

              volume = mass / density

                            [tex]= \frac{4.56 \times 10^{-22} }{3.50}[/tex] 

               volume  = [tex]1.30 \times 10^{-22} cm^3[/tex]

The edge length of a cube then is the cube root of[tex]1.30 \times 10^{-22} cm^3[/tex]  or

                     [tex]a = 5.06 \times 10^{-8}[/tex]

The body diagonal is 4 x the radius and equals a  1.732,

Therefore       r = (a [tex]\times[/tex] 1.732) / 4

                           = (5.06 [tex]\times[/tex] 10^-8

                         [tex]r = 2.19 \times10^{-8}[/tex]

The radius of a barium atom is  [tex]r = 2.19 \times10^{-8}[/tex]cm.