Respuesta :

The value of [tex](f+g)(x)[/tex] is [tex]5 x^{2}-4[/tex]

Explanation:

Given that the functions [tex]f(x)=4 x^{2}+1[/tex] and [tex]g(x)=x^{2}-5[/tex]

We need to determine the value of [tex](f+g)(x)[/tex]

The value of [tex](f+g)(x)[/tex] can be determined by substituting the value of [tex]f(x)[/tex] and [tex]g(x)[/tex] and simplifying the terms.

Thus, let us assign [tex]f(x)=4 x^{2}+1[/tex] in the function [tex](f+g)(x)[/tex], we have,

[tex]4 x^{2}+1+g(x)[/tex]

Now, let us assign [tex]g(x)=x^{2}-5[/tex] in the function [tex](f+g)(x)[/tex], we get,

[tex]4 x^{2}+1+x^{2}-5[/tex]

Grouping the like terms, we have,

[tex]4 x^{2}+x^{2}+1-5[/tex]

Adding the like terms, we get,

[tex]5 x^{2}-4[/tex]

Hence, the value of [tex](f+g)(x)[/tex] is [tex]5 x^{2}-4[/tex]