Answer:
a) [tex]W=-0.0103125\ J[/tex]
b) [tex]W=0.0059375\ J[/tex]
c) Compressing is easier
Explanation:
Given:
Expression of force:
[tex]F=kx-bx^2+cx^3[/tex]
where:
[tex]k=100\ N.m^{-1}[/tex]
[tex]b=700\ N.m^{-2}[/tex]
[tex]c=12000\ N.m^{-3}[/tex]
[tex]x<0:[/tex] when the spring is stretched
[tex]x<0:[/tex] when the spring is compressed
hence,
[tex]F=100x-700x^2+12000x^3[/tex]
a)
From the work energy equivalence the work done is equal to the spring potential energy:
here the spring is stretched so, [tex]x=-0.05\ m[/tex]
Now,
The spring constant at this instant:
[tex]j=\frac{F}{x}[/tex]
[tex]j=\frac{100\times (-0.05)-700\times (-0.05)^2+12000\times (-0.05)^3}{-0.05}[/tex]
[tex]j=-8.25\ N.m^{-1}[/tex]
Now work done:
[tex]W=\frac{1}{2} j.x^2[/tex]
[tex]W=0.5\times -8.25\times (-0.05)^2[/tex]
[tex]W=-0.0103125\ J[/tex]
b)
When compressing the spring by 0.05 m
we have, [tex]x=0.05\ m[/tex]
The spring constant at this instant:
[tex]j=\frac{F}{x}[/tex]
[tex]j=\frac{100\times (0.05)-700\times (0.05)^2+12000\times (0.05)^3}{0.05}[/tex]
[tex]j=4.75\ N.m^{-1}[/tex]
Now work done:
[tex]W=\frac{1}{2} j.x^2[/tex]
[tex]W=0.5\times 4.75\times (0.05)^2[/tex]
[tex]W=0.0059375\ J[/tex]
c)
Since the work done in case of stretching the spring is greater in magnitude than the work done in compressing the spring through the same deflection. So, the compression of the spring is easier than its stretching.