Respuesta :
Answer:
[tex]\frac{d_f}{d} =0.9999983[/tex]
Explanation:
Given:
- force applied on the copper wire, [tex]F=7000\ N[/tex]
- cross sectional area of the wire, [tex]a=0.01\ m^2[/tex]
- Poisson's ratio, [tex]\mu=0.3[/tex]
- we have, Young's modulus, [tex]E=128\times 10^3\ MPa[/tex]
Stress induced due to the applied force:
[tex]\sigma=\frac{F}{a}[/tex]
[tex]\sigma=\frac{7000}{0.01}[/tex]
[tex]\sigma=700000\ Pa=0.7\ MPa[/tex]
Now the longitudinal strain:
[tex]\epsilon=\frac{\sigma}{E}[/tex]
[tex]\epsilon=\frac{0.7}{128\times 10^3}[/tex]
[tex]\epsilon=5.468\times 10^{-6}[/tex]
Now from the relation of Poisson's ratio:
[tex]\mu=\frac{\nu}{\epsilon}[/tex]
where:
[tex]\nu=[/tex] lateral strain
[tex]0.3=\frac{\nu}{5.468\times 10^{-6}}[/tex]
[tex]\nu=1.6406\times 10^{-6}[/tex] ..................(1)
Now we find the diameter of the wire:
[tex]a=\pi.\frac{d^2}{4}[/tex]
[tex]0.01=\pi\times \frac{d^2}{4}[/tex]
[tex]\frac{0.04}{\pi} =d^2[/tex]
[tex]d=0.1128\ m=112.8\ mm[/tex]
When the tensile load is applied its diameter decreases:
The lateral strain is also given as,
[tex]\nu=\frac{\Delta d}{d}[/tex]
[tex]1.6406\times 10^{-6}=\frac{\Delta d}{112.8}[/tex]
[tex]\Delta d=0.000185\ mm[/tex]
Now the final diameter will be:
[tex]d_f=d-\Delta d[/tex]
[tex]d_f=112.8-0.000185[/tex]
[tex]d_f=112.799815\ mm[/tex]
Now the ratio:
[tex]\frac{d_f}{d} =\frac{112.799815}{112.8}[/tex]
[tex]\frac{d_f}{d} =0.9999983[/tex]