Respuesta :

4π radians

Further explanation

We provide an angle of 720° that will be instantly converted to radians.

Recognize these:

  • [tex]\boxed{ \ 1 \ revolution = 360 \ degrees = 2 \pi \ radians \ }[/tex]
  • [tex]\boxed{ \ 0.5 \ revolutions = 180 \ degrees = \pi \ radians \ }[/tex]

From the conversion previous we can produce the formula as follows:

  • [tex]\boxed{\boxed{ \ Radians = degrees \times \bigg( \frac{\pi }{180^0} \bigg) \ }}[/tex]
  • [tex]\boxed{\boxed{ \ Degrees = radians \times \bigg( \frac{180^0}{\pi } \bigg) \ }}[/tex]

We can state the following:

  • Degrees to radians, multiply by [tex]\frac{\pi }{180^0}[/tex]
  • Radians to degrees, multiply by [tex]\frac{180^0}{\pi }[/tex]

Given α = 720°. Let us convert this degree to radians.

[tex]\boxed{ \ \alpha = 720^0 \times \frac{\pi }{180^0} \ }[/tex]

720° and 180° crossed out. They can be divided by 180°.

[tex]\boxed{ \ \alpha = 4 \times \pi \ }[/tex]

Hence, [tex]\boxed{\boxed{ \ 720^0 = 4 \pi \ radians \ }}[/tex]

- - - - - - -

Another example:

Convert [tex]\boxed{ \ \frac{4}{3} \pi \ radians \ }[/tex] to degrees.

[tex]\alpha = \frac{4}{3} \pi \ radians \rightarrow \alpha = \frac{4}{3} \pi \times \frac{180^0}{\pi }[/tex]

180° and 3 crossed out. Likewise with π.

Thus, [tex]\boxed{\boxed{ \ \frac{4}{3} \pi \ radians = 240^0 \ }}[/tex]

Learn more  

  1. A triangle is rotated 90° about the origin https://brainly.com/question/2992432  
  2. The coordinates of the image of the point B after the triangle ABC is rotated 270° about the origin https://brainly.com/question/7437053  
  3. What is 270° converted to radians? https://brainly.com/question/3161884

Keywords: 720° converted to radians, degrees, quadrant, 4π, conversion, multiply by, pi, 180°, revolutions, the formula

Ver imagen BladeRunner212

Answer:

[tex]720^{\circ}=4\pi[/tex]

Step-by-step explanation:

Given :[tex]720^{\circ}[/tex]

To Find : What is 720° converted to radians?

Solution :

1 degree = [tex]\frac{\pi}{180} radian[/tex]

So, [tex]720^{\circ}= \frac{\pi}{180} \times 720[/tex]

[tex]720^{\circ}=4\pi[/tex]

So, Option D is true

Hence [tex]720^{\circ}=4\pi[/tex]