Respuesta :
4π radians
Further explanation
We provide an angle of 720° that will be instantly converted to radians.
Recognize these:
- [tex]\boxed{ \ 1 \ revolution = 360 \ degrees = 2 \pi \ radians \ }[/tex]
- [tex]\boxed{ \ 0.5 \ revolutions = 180 \ degrees = \pi \ radians \ }[/tex]
From the conversion previous we can produce the formula as follows:
- [tex]\boxed{\boxed{ \ Radians = degrees \times \bigg( \frac{\pi }{180^0} \bigg) \ }}[/tex]
- [tex]\boxed{\boxed{ \ Degrees = radians \times \bigg( \frac{180^0}{\pi } \bigg) \ }}[/tex]
We can state the following:
- Degrees to radians, multiply by [tex]\frac{\pi }{180^0}[/tex]
- Radians to degrees, multiply by [tex]\frac{180^0}{\pi }[/tex]
Given α = 720°. Let us convert this degree to radians.
[tex]\boxed{ \ \alpha = 720^0 \times \frac{\pi }{180^0} \ }[/tex]
720° and 180° crossed out. They can be divided by 180°.
[tex]\boxed{ \ \alpha = 4 \times \pi \ }[/tex]
Hence, [tex]\boxed{\boxed{ \ 720^0 = 4 \pi \ radians \ }}[/tex]
- - - - - - -
Another example:
Convert [tex]\boxed{ \ \frac{4}{3} \pi \ radians \ }[/tex] to degrees.
[tex]\alpha = \frac{4}{3} \pi \ radians \rightarrow \alpha = \frac{4}{3} \pi \times \frac{180^0}{\pi }[/tex]
180° and 3 crossed out. Likewise with π.
Thus, [tex]\boxed{\boxed{ \ \frac{4}{3} \pi \ radians = 240^0 \ }}[/tex]
Learn more
- A triangle is rotated 90° about the origin https://brainly.com/question/2992432
- The coordinates of the image of the point B after the triangle ABC is rotated 270° about the origin https://brainly.com/question/7437053
- What is 270° converted to radians? https://brainly.com/question/3161884
Keywords: 720° converted to radians, degrees, quadrant, 4π, conversion, multiply by, pi, 180°, revolutions, the formula
Answer:
[tex]720^{\circ}=4\pi[/tex]
Step-by-step explanation:
Given :[tex]720^{\circ}[/tex]
To Find : What is 720° converted to radians?
Solution :
1 degree = [tex]\frac{\pi}{180} radian[/tex]
So, [tex]720^{\circ}= \frac{\pi}{180} \times 720[/tex]
[tex]720^{\circ}=4\pi[/tex]
So, Option D is true
Hence [tex]720^{\circ}=4\pi[/tex]