Respuesta :

These functions exists (and are invertible) as long as the denominators are not zero: so we want

[tex]x-a\neq 0 \iff x\neq a[/tex]

for [tex]f(x)[/tex], and

[tex]x-b\neq 0 \iff x\neq b[/tex]

for [tex]g(x)[/tex]

Now we show that they are inverses of each other: we want to show that

[tex]f(g(x))=g(f(x))=x[/tex]. Let's start with [tex]f(g(x))=x[/tex]. We have

[tex]f(g(x))=\dfrac{1}{g(x)-a}+b=\dfrac{1}{\frac{1}{x-b}+a-a}+b=\dfrac{1}{\frac{1}{x-b}}+b=x-b+b=x[/tex]

And in the very same way we show that [tex]g(f(x))=x[/tex]