Answer:
274.2 N
Explanation:
To find the magnitude of the net force, we have to resolve each force along two perpendicular directions and then calculate the components of the net force along these 2 directions.
The three forces are:
[tex]F_1=83.7 N[/tex] east, so positive x-axis
[tex]F_2=73.1 N[/tex] northeast, so at [tex]\theta=45^{\circ}[/tex] above positive x-axis
[tex]F_3=181 N[/tex] southeast, so at [tex]\theta=-45^{\circ}[/tex]
The components of each force along the two directions are:
Force 1:
[tex]F_{1x}=83.7 N\\F_{1y}=0[/tex]
Force 2:
[tex]F_{2x}=(73.1)(cos 45^{\circ})=51.7N\\F_{2y}=(73.1)(sin 45^{\circ})=51.7 N[/tex]
Force 3:
[tex]F_{3x}=(181)(cos (-45^{\circ}))=128.0 N\\F_{3y}=(181)(sin(-45^{\circ}))=-128.0 N[/tex]
So, the components of the net force along the two directions are:
[tex]F_x=F_{1x}+F_{2x}+F_{3x}=83.7+51.7+128.0=263.4 N\\F_y=F_{1y}+F_{2y}+F_{3y}=0+51.7-128.0=-76.3 N[/tex]
Therefore, the magnitude of the net force is:
[tex]F=\sqrt{F_x^2+F_y^2}=\sqrt{(263.4)^2+(-76.3)^2}=274.2 N[/tex]