If the normal force exerted by the track on the car when it is at the top of the track (point BB) is 6.00 NN , what is the normal force on the car when it is at the bottom of the track (point AA)?

Respuesta :

Answer:

[tex]N_A=21.68N[/tex]

Explanation:

We already know that the wight in reference is gravitational force on an object:[tex]F_G=mg[/tex].

Gravity=[tex]9.8m/s^2[/tex]

Weight of car=0.800kg

To solve for A, we apply Newton's second law of radial direction:

[tex]\sum F_r_a_d=ma_R\\=mg+N_B\\[/tex]

Rewrite to calculate acceleration,[tex]a[/tex]:

[tex]a_R=\frac {mg+N_B}{m}\\=\frac{0.8kg+9.8m/s^2+6N}{0.8kg}=17.3m/s^2[/tex]

Solving for Position A:

[tex]\sum F_r_a_d=ma_R\\=N_A-mg\\N_A=ma_R+mg=0.8kg(17.3m/s^2+9.8m/s^2)\\=21.62N[/tex]