Respuesta :

Answer:

  • [tex]\frac{b^{-2}}{ab^{-3}}=\frac{b}{a}[/tex]

Step-by-step explanation:

Writing the description in algebraic translation

[tex]\frac{b^{-2}}{ab^{-3}}[/tex]

so we have to find the expression which will be equal to [tex]\frac{b^{-2}}{ab^{-3}}[/tex].

Considering the expression

[tex]\frac{b^{-2}}{ab^{-3}}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}=x^{a-b}[/tex]

[tex]\frac{b^{-2}}{b^{-3}}=b^{-2-\left(-3\right)}[/tex]

so the expression becomes

[tex]=\frac{b^{-2-\left(-3\right)}}{a}[/tex]            ∵ [tex]\frac{b^{-2}}{b^{-3}}=b^{-2-\left(-3\right)}[/tex]

[tex]\mathrm{Subtract\:the\:numbers:}\:-2-\left(-3\right)=1[/tex]

[tex]=\frac{b}{a}[/tex]

Therefore,

                    [tex]\frac{b^{-2}}{ab^{-3}}=\frac{b}{a}[/tex]

Answer:

d e2020

Step-by-step explanation: