Respuesta :
Answer : The value of the equilibrium constant is, [tex]K_{goal}=1.35\times 10^{-34}[/tex]
Explanation :
The given main reaction is:
[tex]N_2(g)+O_2(g)+H_2(g)\rightleftharpoons \frac{1}{2}N_2H_4(g)+NO_2(g)[/tex]
The intermediate reactions are:
[tex]N_2(g)+O_2(g)\rightleftharpoons 2NO(g)[/tex]; [tex]K_1=4.10\times 10^{-31}[/tex]
[tex]N_2(g)+2H_2(g)\rightleftharpoons N_2H_4(g)[/tex]; [tex]K_2=7.40\times 10^{-26}[/tex]
[tex]2NO(g)+O_2(g)\rightleftharpoons 2NO_2(g)[/tex]; [tex]K_3=6.00\times 10^{-13}[/tex]
Now we are adding all the equation, we get:
[tex]2N_2(g)+2O_2(g)+2NO(g)+2H_2(g)\rightleftharpoons 2NO(g)+N_2H_4(g)+2NO_2(g)[/tex]
[tex]2N_2(g)+2O_2(g)+2H_2(g)\rightleftharpoons N_2H_4(g)+2NO_2(g)[/tex] ...........(1)
The equilibrium constant expression will be:
[tex]K_{goal}=K_1\times K_2\times K_3[/tex]
Now we are dividing equation 1 by 2, we get:
[tex]N_2(g)+O_2(g)+H_2(g)\rightleftharpoons \frac{1}{2}N_2H_4(g)+NO_2(g)[/tex] ...........(1)
The equilibrium constant expression will be:
[tex]K_{goal}=(K_1\times K_2\times K_3)^{1/2}[/tex]
Now put all the given values in this expression, we get:
[tex]K_{goal}=[(4.10\times 10^{-31})\times (7.40\times 10^{-26})\times (6.00\times 10^{-13})]^{1/2}[/tex]
[tex]K_{goal}=1.35\times 10^{-34}[/tex]
Thus, the value of the equilibrium constant is, [tex]K_{goal}=1.35\times 10^{-34}[/tex]