Respuesta :

Answer:

72.25 ft

Step-by-step explanation:

The function that models the height of the ball is

[tex]h(t) = 68t - 16 {t}^{2} [/tex]

The maximum height occurs at:

[tex]t = - \frac{b}{2a} [/tex]

[tex]t = - \frac{68}{2 \times - 16} = \frac{68}{32} = 2.125[/tex]

We substitute t=2.125 to get:

[tex]h(2.125) = 68(2.125) - 16(2.125) ^{2} [/tex]

[tex]h(2.125) = 72.25[/tex]

The maximum height is 72.25 feet