Respuesta :
For this case we must simplify the following expression:
[tex]\frac {\frac {2a + 1} {10a-5}} {\frac {10a} {4a ^ 2-1}} =[/tex]
We apply double C:
[tex]\frac {(4a ^ 2-1) (2a + 1)} {10a (10a-5)} =[/tex]
We apply distributive property in the numerator and we take common factor 5 in the denominator:
[tex]\frac {8a ^ 3 + 4a ^ 2-2a-1} {10a (5 (2a-1))} =[/tex]
We factor the numerator:
[tex]\frac {(2a + 1) ^ 2 (2a-1)} {10a (5 (2a-1))} =\\\frac {(2a + 1) ^ 2 (2a-1)} {50a (2a-1)} =[/tex]
We simplify:
[tex]\frac {(2a + 1) ^ 2} {50a}[/tex]
Answer:
[tex]\frac {(2a + 1) ^ 2} {50a}[/tex]
Option D
The expression is equivalent to the [tex]\dfrac{(2a+1)^2}{50a}[/tex].
We have to determine, the expression is equivalent to,
[tex]= \dfrac{\frac{2a+1}{10a-5}}{\frac{10a}{4a^2-1 }}[/tex]
To determine the equivalent expression of the given expression follow all the steps given below.
- Step1; Apply double C property and written function in the simplest form,
[tex]= \dfrac{2a+1}{10a-5} \times \dfrac{4a^2-1}{10a}[/tex]
- Step2; Factorize the term [tex]4a^2-1[/tex] and taking common factor 5 in the denominator.
[tex]= \dfrac{(2a+1 )\times (2a-1) \times (2a+1)}{10a(5(2a-1))}\\\\= \dfrac{(2a+1 )\times (2a-1) \times (2a+1)}{50a(2a-1)}\\\\[/tex]
- Step3: Cancel out the (2a-1 )same term from numerator and denominator.
[tex]= \dfrac{(2a+1 ) \times (2a+1)}{50a}\\\\[/tex]
- Step4; Multiply the equation and write the equation in simplest form,.
[tex]= \dfrac{(2a+1)^2}{50a}[/tex]
Hence, The expression is equivalent to the [tex]\dfrac{(2a+1)^2}{50a}[/tex].
To know more about Function click the link given below.
https://brainly.com/question/15186010