Respuesta :
Hello,
++++++++++++++++++++++++
Answer C
++++++++++++++++++++++++
x^3+7^3=(x+7)(x²-7x+49) A: False (+14)
x^3+8^3=(x+8)(x²-8x+64) B:False (+8x)
x^3-10^3=(x-10)(x²+10x+100) D:False (-10x)
++++++++++++++++++++++++
Answer C
++++++++++++++++++++++++
x^3+7^3=(x+7)(x²-7x+49) A: False (+14)
x^3+8^3=(x+8)(x²-8x+64) B:False (+8x)
x^3-10^3=(x-10)(x²+10x+100) D:False (-10x)
Answer:
option (3) satisfies the products that will result in a difference of cubes.
[tex](x-9)(x^2+9x+81)=x^3-3^3[/tex]
Step-by-step explanation:
Given : Some options.
We have to choose the products that will result in a sum or difference of cubes.
A sum or difference of cubes is given by:
[tex]a^3-b^3=(a-b)(a^2+b^2+ab)[/tex]
and [tex]a^3+b^3=(a+b)(a^2+b^2-ab)[/tex]
Thus, out of given
[tex](x-9)(x^2+9x+81)[/tex] is in the same form as [tex]a^3-b^3[/tex] where a = x and b = 9.
Thus, [tex](x-9)(x^2+9x+81)=x^3-3^3=x^3-729[/tex]
Thus, only option (3) satisfies the products that will result in a difference of cubes.