Answer:
A) 3/4
Step-by-step explanation:
Given: Both circle A and circle B have a central angle measuring 50°.
The area of circle A's sector is 36π cm2.
The area of circle B's sector is 64π cm2.
We know, area of the circle= [tex]\pi r^{2}[/tex]
lets assume the radius of circle A be "[tex]r_1[/tex]" and radius of circle B be "[tex]r_2[/tex]"
As given, Area of circle A and B´s sector is 36π and 64π repectively.
Now, writing ratio of area of circle A and B, to find the ratio of radius.
⇒[tex]\frac{\pi r_1^{2} }{\pi r_2^{2} } = \frac{36\pi }{64\pi }[/tex]
Cancelling out the common factor
⇒ [tex]\frac{r_1^{2} }{r_2^{2} } = \frac{36 }{64}[/tex]
⇒ [tex](\frac{r_1 }{r_2} )^{2} = \frac{36 }{64}[/tex]
Taking square on both side.
Remember; √a²= a
⇒ [tex](\frac{r_1 }{r_2} ) =\sqrt{ \frac{36 }{64}}[/tex]
⇒ [tex](\frac{r_1 }{r_2} ) = \frac{6}{8}[/tex]
⇒[tex]\frac{r_1 }{r_2} = \frac{3}{4}[/tex]
Hence, ratio of the radius of circle A to the radius of circle B is 3:4 or 3/4.