Respuesta :
Answer:
The option x squared ( root index 4 start root x squared end root) is correct
Therefore the equivalent expression to the given expression is [tex]x^2\sqrt[4]{x^2}[/tex]
Step-by-step explanation:
Given expression is [tex]\sqrt[4]{x^{10}}[/tex]
To find the equivalent expression to the given expression :
[tex]\sqrt[4]{x^{10}}[/tex]
[tex]=\sqrt[4]{x^{8+2}}[/tex]
[tex]=\sqrt[4]{x^8.x^2}[/tex] ( using the property [tex]a^m.a^n=a^{m+n}[/tex] )
[tex]=\sqrt[4]{x^{2\times 4}.x^2}[/tex]
[tex]=\sqrt[4]{(x^2)^4x^2}[/tex] ( using the peoperty [tex]a^{mn}=(a^m)^n[/tex] )
[tex]=\sqrt[4]{(x^2)^4}\times \sqrt[4]{x^2}[/tex] ( using the property [tex]\sqrt{ab}=\sqrt{a}\times \sqrt{b}[/tex] )
[tex]=x^2\sqrt[4]{x^2}[/tex]
Therefore [tex]\sqrt[4]{x^{10}}=x^2\sqrt[4]{x^2}[/tex]
Therefore the equivalent expression to the given expression is [tex]x^2\sqrt[4]{x^2}[/tex]
The option "x squared (RootIndex 4 StartRoot x squared EndRoot)" is correct
That is [tex]x^2\sqrt[4]{x^2}[/tex] is correct
Answer:
the correct answer is A
Step-by-step explanation:
hope this helped