Which expression is equivalent to RootIndex 4 StartRoot x Superscript 10 Baseline EndRoot? x squared (RootIndex 4 StartRoot x squared EndRoot) x2.2 x cubed (RootIndex 4 StartRoot x EndRoot) x5

Respuesta :

Answer:

The option x squared ( root index 4 start root x squared end root) is correct

Therefore the equivalent expression to the given expression is [tex]x^2\sqrt[4]{x^2}[/tex]

Step-by-step explanation:

Given expression is [tex]\sqrt[4]{x^{10}}[/tex]

To find the equivalent expression to the given expression :

[tex]\sqrt[4]{x^{10}}[/tex]

[tex]=\sqrt[4]{x^{8+2}}[/tex]

[tex]=\sqrt[4]{x^8.x^2}[/tex] ( using the property [tex]a^m.a^n=a^{m+n}[/tex] )

[tex]=\sqrt[4]{x^{2\times 4}.x^2}[/tex]

[tex]=\sqrt[4]{(x^2)^4x^2}[/tex] ( using the peoperty [tex]a^{mn}=(a^m)^n[/tex] )

[tex]=\sqrt[4]{(x^2)^4}\times \sqrt[4]{x^2}[/tex] ( using the property [tex]\sqrt{ab}=\sqrt{a}\times \sqrt{b}[/tex] )

[tex]=x^2\sqrt[4]{x^2}[/tex]

Therefore [tex]\sqrt[4]{x^{10}}=x^2\sqrt[4]{x^2}[/tex]

Therefore the equivalent expression to the given expression is [tex]x^2\sqrt[4]{x^2}[/tex]

The option "x squared (RootIndex 4 StartRoot x squared EndRoot)" is correct

That is [tex]x^2\sqrt[4]{x^2}[/tex] is correct

Answer:

the correct answer is A

Step-by-step explanation:

hope this helped