Answer:
V=512^2/3* 19683^1/3*256^1/4 = 6912
Step-by-step explanation:
V= [tex](512^{\frac{2}{3} } ) \times (19683^{\frac{1}{3} } )\times (256^{\frac{1}{4} } )\\[/tex]
As
[tex]2^{9} = 512\\2^{8} = 256\\19683^{\frac{1}{3} } = 27\\[/tex]
putting values in equation
V= [tex]2^{9(^{\frac{2}{3} } )} \times 27 \times 2^{8^({\frac{1}{4}) } } \\[/tex] let it be equation 1
As
[tex]2^9^{\frac{2}{3} } = 2^6 according\,to\,exponential\,rule\\2^8^\frac{1}{4} = 2^2 according\,to\,exponential\,rule\\\\[/tex]
putting values in equation 1
[tex]V= 2^6\times 27\times 2^2[/tex]
According to exponential rule [tex]2^6 \times 2^2 = 2^8[/tex]
V=[tex]2^8 \times 27\\[/tex]
[tex]V=256\times 27\\V=6912[/tex]
So
V= 6912
Keywords: Algebra
Learn more about algebra at:
#learnwithBrainly