Respuesta :

Answer:240.1 m

Step-by-step explanation:

We are given the following equation that models the the time it takes to an object to fall to the ground:

[tex]t_{(H)}=\sqrt{\frac{2H}{g}}[/tex]

Where:

[tex]t_{(H)}=7 s[/tex] is the time it takes to the object to fall to the ground

[tex]H[/tex] is the object's initial height

[tex]g=9.8 m/s^{2}[/tex] is the acceleration due gravity

Isolating [tex]H[/tex]:

[tex]t^{2}=(\sqrt{\frac{2H}{g}})^{2}[/tex]

[tex]t^{2}=\frac{2H}{g}}[/tex]

[tex]H=\frac{t^{2}g}{2}[/tex]

Solving with the given data:

[tex]H=\frac{(7 s)^{2}(9.8 m/s^{2})}{2}[/tex]

[tex]H=240.1 m[/tex] This is the initial height