1xbreee
contestada

Which of the following is an odd function?
f(x) = x3 + 5x2 + x
O F(x)= √x
Of(x) = x2 + x
O f(x) = -x

Respuesta :

Option 4

f(x) = -x is an odd function

Solution:

A function is odd if and only if f(–x) = –f(x)

Option 1

[tex]f(x) = x^3 + 5x^2 + x[/tex]

Substitute x = -x in above equation

[tex]f(-x) = (-x)^3 + 5(-x)^2 + (-x)[/tex]

Cubes always involve multiplying a number by itself three times, so if the number is negative the cube will always be negative

Ans squaring results in positive

[tex]f(-x) = -x^3 + 5x -x[/tex]  --- eqn 1

[tex]-f(x) = -(x^3 + 5x^2 + x)\\\\-f(x) = -x^3 - 5x^2 - x[/tex]  ---- eqn 2

Comparing eqn 1 and eqn 2,

[tex]f(-x) \neq -f(x)[/tex]

Therefore not an odd function

Option 2

[tex]f(x) = \sqrt{x}[/tex]

[tex]f(-x) = \sqrt{-x}[/tex]

[tex]-f(x) = - \sqrt{x}[/tex]

Therefore,

[tex]f(-x) \neq -f(x)[/tex]

Therefore not an odd function

Option 3

[tex]f(x) = x^2 + x\\\\f(-x) = (-x)^2 + (-x)\\\\f(-x) = x^2 - x[/tex]

[tex]-f(x) = -(x^2 + x) = -x^2 - x[/tex]

[tex]f(-x) \neq -f(x)[/tex]

Therefore not an odd function

Option 4

[tex]f(x) = -x\\\\f(-x) = -(-x) = x[/tex]

[tex]-f(x) = -(-x) = x[/tex]

[tex]f(-x) = -f(x)[/tex]

Thus option 4 is correct and it is an odd function

Answer:

D

Step-by-step explanation:

just took test on edge