A rope passes over a fixed sheave with both ends hanging straight down. The coefficient of friction between the rope and sheave is 0.4. What is the largest ratio of tensile forces between the two ends of the rope before the rope starts to slide over the sheave?

Respuesta :

Answer:3.51

Explanation:

Given

Coefficient of Friction [tex]\mu =0.4 [/tex]

Consider a small element at an angle \theta having an angle of [tex]d\theta [/tex]

Normal Force[tex]=T\times \frac{d\theta }{2}+(T+dT)\cdot \frac{d\theta }{2}[/tex]

[tex]N=T\cdot d\theta [/tex]

Friction [tex]f=\mu \times Normal\ Reaction[/tex]

[tex]f=\mu \cdot N[/tex]

and [tex]T+dT-T=f=\mu Td\theta [/tex]

[tex]dT=\mu Td\theta [/tex]

[tex]\frac{dT}{T}=\mu d\theta [/tex]

[tex]\int_{T_2}^{T_1}\frac{dT}{T}=\int_{0}^{\pi }\mu d\theta [/tex]

[tex]\frac{T_2}{T_1}=e^{\mu \pi}[/tex]

[tex]\frac{T_2}{T_1}=e^{0.4\times \pi }[/tex]

[tex]\frac{T_2}{T_1}==e^{1.256}[/tex]

[tex]\frac{T_2}{T_1}=3.51[/tex]

Ver imagen nuuk