Answer:
Mean = 71.4 years
Standard Deviation = 20.64 years
Step-by-step explanation:
We are given the following data set:
72, 68, 81, 93, 56, 19, 78, 94, 83, 84, 77, 69, 85, 97, 75, 71, 86, 47, 66, 27
Formula:
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]Mean =\displaystyle\frac{1428}{20} = 71.4[/tex]
Sum of squares of differences =
0.36 + 11.56 + 92.16 + 466.56 + 237.16 + 2745.76 + 43.56 + 510.76 + 134.56 + 158.76 + 31.36 + 5.76, 184.96 + 655.36 + 12.96 + 0.16 + 213.16 + 595.36 + 29.16 + 1971.36 = 8100.8
[tex]S.D = \sqrt{\displaystyle\frac{8100.8}{19}} = 20.64[/tex]
Mean = 71.4 years
Standard Deviation = 20.64 years