Answer: The concentration of [tex]Sn^{2+}[/tex] in the cell is [tex]9.0\times 10^{-3}M[/tex]
Explanation:
We are given:
Oxidation half reaction: [tex]Zn(s)\rightarrow Zn^{2+}(aq.)+2e^-[/tex] [tex]E^o_{Zn^{2+}/Zn}=-0.76V[/tex]
Reduction half reaction: [tex]Sn^{2+}(aq.)+2e^-\rightarrow Sn(s)[/tex] [tex]E^o_{Sn^{2+}/Sn}=-0.136V[/tex]
The substance having highest positive [tex]E^o[/tex] potential will always get reduced and will undergo reduction reaction. Here, fluorine will undergo reduction reaction will get reduced.
Here, tin will undergo reduction reaction and will get reduced.
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:
[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]
Putting values in above equation, we get:
[tex]E^o_{cell}=-0.136-(-0.76)=0.624V[/tex]
To calculate the EMF of the cell, we use the Nernst equation, which is:
[tex]E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{[Mn^{2+}]}{[Cu^{2+}]}[/tex]
where,
[tex]E_{cell}[/tex] = electrode potential of the cell = 0.660 V
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +0.624 V
n = number of electrons exchanged = 2
[tex][Zn^{2+}]=2.5\times 10^{-3}M[/tex]
[tex][Sn^{2+}][/tex] = ?
Putting values in above equation, we get:
[tex]0.660=0.624-\frac{0.059}{2}\times \log(\frac{2.5\times 10^{-3}}{[Sn^{2+}})[/tex]
[tex][Sn^{2+}]=9.0\times 10^{-3}M[/tex]
Hence, the concentration of [tex]Sn^{2+}[/tex] ions is [tex]9.0\times 10^{-3}M[/tex]