Respuesta :
[tex]\sqrt{2x-4}-x+6=0[/tex]
[tex]\sqrt{2x-4}=x-6[/tex]
Square both sides
[tex]2x-4=x^2-2.x.6+6^2[/tex]
[tex]2x-4=x^2-12x+36[/tex]
[tex]x^2-12x+36-2x+4=0[/tex]
[tex]x^2-14x+40=0[/tex]
Solving
Δ = b² - 4.a.c
Δ = -14² - 4 . 1 . 40
Δ = 196 - 4. 1 . 40
Δ = 36
There are 2 real roots.
x = (-b +- √Δ)/2a
x' = (--14 + √36)/2.1
x'' = (--14 - √36)/2.1
x' = 20 / 2
x'' = 8 / 2
x' = 10
x'' = 4
Answer:
Option D. is the answer
Step-by-step explanation:
The given expression is [tex]\sqrt{2x-4}-x+6=0[/tex]
We further solve the given equation,
[tex]\sqrt{2x-4}=(x-6)[/tex]
(2x - 4) = (x-6)²
[tex](2x-4)=x^{2}+36-12x[/tex]
x²- 12x + 36 - 2x + 4 = 0
x² - 14x + 40 = 0
x² - 10x - 4x + 40 = 0
x(x - 10) - 4(x - 10) = 0
(x - 4)(x - 10) = 0
(x - 4) = 0 ⇒ x = 4
Or (x - 10) = 0
⇒ x = 10
Now we put the value of x = 4 in the equation,
= [tex]\sqrt{(2\times 4)-4}-4+6[/tex]
= [tex]\sqrt{4}-4+6[/tex]
= 2 - 4 + 6
= 0
For x = 10
[tex]\sqrt{2\times 10-4}-10+6[/tex]
= 4 - 10 + 6
= 0
Therefore, there are two solutions x = 4, 10
Option D will be the answer.