SithLeo
contestada

5. Find the discriminant of 15x2 = 4x – 1 and describe
the nature of the roots of the equation. Then solve the
equation by using the Quadratic Formula.

Respuesta :

Answer:

a) The discriminant of the equation =  - 44

b)The nature of the roots will be imaginary.

c) [tex]x = \frac{2 +\sqrt{11} i}{15}  or, x = \frac{2 - \sqrt{11} i}{15}[/tex]

Step-by-step explanation:

Here, the given expression is [tex]15x^{2}  = 4x -1[/tex]

or, [tex]15x^{2}  -  4x + 1   = 0[/tex]

Now the discriminant (D) of a quadratic equation [tex]ax^{2}  +b x + c   = 0[/tex]

D = [tex]b^{2}   -  4ac  = (-4)^{2}  -  4(15) (1)  = 16 - (60) = -44[/tex]

Hence, the discriminant of the equation =  - 44

As D< 0, so the roots will be imaginary.

Now,by quadratic formula : [tex]x = \frac{-b \pm \sqrt{b^{2}  - 4ac} }{2a}[/tex]

So, here [tex]x = \frac{-(-4) \pm \sqrt{D} }{2a}  = \frac{4 \pm \sqrt{(-44 )} }{30}[/tex]

So, either [tex]x = \frac{4 + \sqrt{(-44 )} }{30} or, x =  \frac{4 - \sqrt{(-44 )} }{30}[/tex]

or, [tex]x = \frac{2 +\sqrt{11} i}{15}  or, x = \frac{2 - \sqrt{11} i}{15}[/tex]