Answer:
a) The discriminant of the equation = - 44
b)The nature of the roots will be imaginary.
c) [tex]x = \frac{2 +\sqrt{11} i}{15} or, x = \frac{2 - \sqrt{11} i}{15}[/tex]
Step-by-step explanation:
Here, the given expression is [tex]15x^{2} = 4x -1[/tex]
or, [tex]15x^{2} - 4x + 1 = 0[/tex]
Now the discriminant (D) of a quadratic equation [tex]ax^{2} +b x + c = 0[/tex]
D = [tex]b^{2} - 4ac = (-4)^{2} - 4(15) (1) = 16 - (60) = -44[/tex]
Hence, the discriminant of the equation = - 44
As D< 0, so the roots will be imaginary.
Now,by quadratic formula : [tex]x = \frac{-b \pm \sqrt{b^{2} - 4ac} }{2a}[/tex]
So, here [tex]x = \frac{-(-4) \pm \sqrt{D} }{2a} = \frac{4 \pm \sqrt{(-44 )} }{30}[/tex]
So, either [tex]x = \frac{4 + \sqrt{(-44 )} }{30} or, x = \frac{4 - \sqrt{(-44 )} }{30}[/tex]
or, [tex]x = \frac{2 +\sqrt{11} i}{15} or, x = \frac{2 - \sqrt{11} i}{15}[/tex]