Answer:
(A) [tex]\lambda =12.375\times 10^{-8}m[/tex]
(B) [tex]\lambda =12.375\times 10^{-8}m[/tex]
(C) [tex]\lambda =12.375\times 10^{-6}m[/tex]
Explanation:
(a) We have given energy of the electron = 10 eV
We know that [tex]1eV=1.6\times 10^{-19}J[/tex]
So 10 eV = [tex]=10\times 1.6\times 10^{-19}J=1.6\times 10^{-18}j[/tex]
Speed of light [tex]c=3\times 10^8m/sec[/tex]
Plank's constant [tex]h=6.6\times 10^{-34}J-s[/tex]
Energy of electron is given by [tex]E=h\nu =\frac{hc}{\lambda }[/tex]
[tex]1.6\times 10^{-18}=\frac{6.6\times 10^{-34}\times 3\times 10^8}{\lambda }[/tex]
[tex]\lambda =12.375\times 10^{-8}m[/tex]
(b) Energy of photon is also given as E =10 eV
We know that [tex]1eV=1.6\times 10^{-19}J[/tex]
So 10 eV = [tex]=10\times 1.6\times 10^{-19}J=1.6\times 10^{-18}j[/tex]
Energy of photon is given by [tex]E=h\nu =\frac{hc}{\lambda }[/tex]
Speed of light [tex]c=3\times 10^8m/sec[/tex]
Plank's constant [tex]h=6.6\times 10^{-34}J-s[/tex]
[tex]1.6\times 10^{-18}=\frac{6.6\times 10^{-34}\times 3\times 10^8}{\lambda }[/tex]
[tex]\lambda =12.375\times 10^{-8}m[/tex]
(c) Energy of neutron is given as E= 0.1 eV
We know that [tex]1eV=1.6\times 10^{-19}J[/tex]
So 0.1 eV = [tex]=10\times 1.6\times 10^{-19}J=1.6\times 10^{-20}j[/tex]
Speed of light [tex]c=3\times 10^8m/sec[/tex]
Plank's constant [tex]h=6.6\times 10^{-34}J-s[/tex]
[tex]1.6\times 10^{-20}=\frac{6.6\times 10^{-34}\times 3\times 10^8}{\lambda }[/tex]
[tex]\lambda =12.375\times 10^{-6}m[/tex]