Respuesta :

frika

Answer:

[tex]m+n-1[/tex]

Step-by-step explanation:

I am thinking of n consecutive positive integers. The smallest of these numbers is m.

So,

  • [tex]a_1=m[/tex] - the first number,
  • [tex]a_2=m+1[/tex] - the second number,
  • [tex]a_3=m+2[/tex] - the third number,
  • ...
  • [tex]a_n=m+(n-1)=m+n-1[/tex] - the nth number.

The list of n consecutive positive integers is

[tex]m, \ m+1,\ m+2,\ m+3, \ ... ,\ m+n-1[/tex]

The largest integer is [tex]m+n-1[/tex]

Answer:

[tex]a_n=m+n-1[/tex]

Step-by-step explanation:

We are given that n consecutive integers.

Smallest positive integer=m

We have to find the formula which represents the  largest positive integer of given integers.

Suppose we have n positive consecutive integers

First integer=m

Second positive integer=m+1

Third integer=m+2

:

:

:

[tex]d_1=m+1-m=1[/tex]

[tex]d_2=m+2-m-1=1[/tex]

Difference between  consecutive integers are constant. It means it is in A.P

nth term of AP is given by

[tex]a_n=a+(n-1)d[/tex]

Substitute the value

[tex]a_n=m+(n-1)[/tex]

[tex]a_n=m+n-1[/tex]

Hence, the formula that represents the largest integer of given integers is given by

[tex]a_n=m+n-1[/tex]