A Fahrenheit and a Celsius thermometer are immersed in the same medium. At what Celsius temperature will the numerical reading on the Fahrenheit thermometer be (a) 49° less than that on the Celsius thermometer, (b) twice that on the Celsius thermometer, (c) one-eighth that on the Celsius thermometer, and (d) 300° more than that on the Celsius thermometer?

Respuesta :

Answer :

(a) The Celsius temperature will be, [tex]-101.25^oC[/tex]

(b) The Celsius temperature will be, [tex]160^oC[/tex]

(c) The Celsius temperature will be, [tex]-640^oC[/tex]

(d) The Celsius temperature will be, [tex]335^oC[/tex]

Explanation :

The conversion used for the temperature from degree Celsius to Fahrenheit is:

[tex]^oF=\frac{9}{5}^oC+32[/tex]         ..............(1)

where,

[tex]^oF[/tex] = temperature in Fahrenheit  

[tex]^oC[/tex] = temperature in centigrade

(a) [tex]49^o[/tex] less than that on the Celsius thermometer.

As per question, the equation will be:

[tex]^oF=^oC-49[/tex]      ..........(2)

Now substituting (2) in (1), we get:

[tex]^oC-49=\frac{9}{5}^oC+32[/tex]

[tex]^oC=-101.25[/tex]

The Celsius temperature will be, [tex]-101.25^oC[/tex]

(b) Twice that on the Celsius thermometer.

As per question, the equation will be:

[tex]^oF=2^oC[/tex]      ..........(3)

Now substituting (3) in (1), we get:

[tex]2^oC=\frac{9}{5}^oC+32[/tex]

[tex]^oC=160[/tex]

The Celsius temperature will be, [tex]160^oC[/tex]

(c) One-eighth that on the Celsius thermometer.

As per question, the equation will be:

[tex]^oF=\frac{1}{8}^oC[/tex]      ..........(4)

Now substituting (4) in (1), we get:

[tex]\frac{1}{8}^oC=\frac{9}{5}^oC+32[/tex]

[tex]^oC=-640[/tex]

The Celsius temperature will be, [tex]-640^oC[/tex]

(d) [tex]300^o[/tex] more than that on the Celsius thermometer.

As per question, the equation will be:

[tex]^oF=^oC+300[/tex]      ..........(5)

Now substituting (5) in (1), we get:

[tex]^oC+300=\frac{9}{5}^oC+32[/tex]

[tex]^oC=335[/tex]

The Celsius temperature will be, [tex]335^oC[/tex]