Respuesta :
Answer: n=4
Explanation:
We have the following expression for the volume flow rate [tex]Q[/tex] of a hypodermic needle:
[tex]Q=\frac{\pi R^{n}(P_{2}-P_{1})}{8\eta L}[/tex] (1)
Where the dimensions of each one is:
Volume flow rate [tex]Q=\frac{L^{3}}{T}[/tex]
Radius of the needle [tex]R=L[/tex]
Length of the needle [tex]L=L[/tex]
Pressures at opposite ends of the needle [tex]P_{2}[/tex] and [tex]P_{1}=\frac{M}{LT^{2}}[/tex]
Viscosity of the liquid [tex]\eta=\frac{M}{LT}[/tex]
We need to find the value of [tex]n[/tex] whicha has no dimensions, and in order to do this, we have to rewritte (1) with its dimensions:
[tex]\frac{L^{3}}{T}=\frac{\pi L^{n}(\frac{M}{LT^{2}})}{8(\frac{M}{LT}) L}[/tex] (2)
We need the right side of the equation to be equal to the left side of the equation (in dimensions):
[tex]\frac{L^{3}}{T}=\frac{\pi}{8} \frac{ L^{n}}{LT}[/tex] (3)
[tex]\frac{L^{3}}{T}=\frac{\pi}{8} \frac{ L^{n-1}}{T}[/tex] (4)
As we can see [tex]n[/tex] must be 4 if we want the exponent to be 3:
[tex]\frac{L^{3}}{T}=\frac{\pi}{8} \frac{ L^{4-1}}{T}[/tex] (5)
Finally:
[tex]\frac{L^{3}}{T}=\frac{\pi}{8} \frac{ L^{3}}{T}[/tex] (6)