Respuesta :

Answer:

D

Step-by-step explanation:

I see the curve given crosses the point (1,3).

So let's check and see which of the given equations is satisfied by that point.

Checking choice A:

[tex]y=2(\frac{1}{4})^x[/tex] with (x,y)=(1,3):

[tex]3=2(\frac{1}{4})^1[/tex]

[tex]3=2(\frac{1}{4})[/tex]

[tex]3=\frac{1}{2}[/tex]

So choice A is not right.

Checking choice B:

[tex]y=2(\frac{1}{2})^x[/tex] with (x,y)=(1,3):

[tex]3=2(\frac{1}{2})^1[/tex]

[tex]3=2(\frac{1}{2})[/tex]

[tex]3=1[/tex]

So choice B is not right.

Checking choice C:

[tex]y=6(\frac{1}{4})^x[/tex] with (x,y)=(1,3):

[tex]3=6(\frac{1}{4})^1[/tex]

[tex]3=6(\frac{1}{4})[/tex]

[tex]3=\frac{3}{2}[/tex]

So choice C is not right.

Checking choice D:

[tex]y=6(\frac{1}{2})^x[/tex] with (x,y)=(1,3):

[tex]3=6(\frac{1}{2})^1[/tex]

[tex]3=6(\frac{1}{2})[/tex]

[tex]3=3[/tex]

So choice D is the only choice that would contain the point (1,3) when graphed.

So choice C is not right.

Answer:

D

Step-by-step explanation:

The standard form of an exponential function is

y = a [tex]b^{x}[/tex]

Using points from the graph to find a and b

Using (0, 6 ), then

6 = a [tex]b^{0}[/tex] = a × 1 ⇒ a = 6

Using (1, 3 ), then

3 = 6 [tex]b^{1}[/tex] ⇒ b = [tex]\frac{3}{6}[/tex] = [tex]\frac{1}{2}[/tex]

The exponential function is

f(x) = 6 [tex](\frac{1}{2}) ^{x}[/tex] → D