Answer:
[tex]v_f = 5.4 \times 10^4 m/s[/tex]
Explanation:
As per energy conservation we can say
initial total energy of the object at the surface of earth = final total energy of the object at highest height
now we have
[tex]U_i = -\frac{GMm}{R} + \frac{1}{2}mv^2[/tex]
here we know that
M = mass of earth
m = mass of object
R = radius of earth
now when object reached far away from the earth then it will only have kinetic energy
[tex]U_f = \frac{1}{2}mv_f^2[/tex]
now by energy conservation
[tex]-\frac{GMm}{R} + \frac{1}{2}mv^2 = = \frac{1}{2}mv_f^2[/tex]
[tex]-\frac{GM}{R} + \frac{1}{2}v^2 = \frac{1}{2}v_f^2[/tex]
[tex]-\frac{(6.67 \times 10^{-11})(5.98\times 10^{24})}{6.37\times 10^6} + \frac{1}{2}(5.52 \times 10^4)^2 = \frac{1}{2}v_f^2[/tex]
[tex]-6.26 \times 10^7 + 1.52 \times 10^8 = \frac{1}{2}v^2[/tex]
[tex]v_f = 5.4 \times 10^4 m/s[/tex]