Answer:
The charge on the drop is [tex]2.71\times10^{-18}\ C[/tex]
Explanation:
Given that,
Voltage = 2036 V
Distance d= 2.08 cm
Diameter [tex]D=4.00\times10^{-6}\ m[/tex]
Density [tex]\rho=0.81\ g/cm^3[/tex]
We need to calculate the volume of the drop
[tex]V=\dfrac{4}{3}\pi\times r^3[/tex]
Put the value into the formula
[tex]V=\dfrac{4}{3}\times\pi\times (\dfrac{4.00\times10^{-6}}{2})^3[/tex]
[tex]V=3.35\times10^{-17}\ m^3[/tex]
We need to calculate the mass
Using formula of density
[tex]\rho=\dfrac{m}{V}[/tex]
[tex]m=\rho\times V[/tex]
[tex]m=0.81\times1000\times3.35\times10^{-17}[/tex]
[tex]m=2.71\times10^{-14}\ kg[/tex]
We need to calculate the electric field
Using formula of electric field
[tex]E = \dfrac{V}{d}[/tex]
Where, V = potential difference
d = separation of plates
Put the value into the formula
[tex]E=\dfrac{2036}{2.08\times10^{-2}}[/tex]
[tex]E=9.788\times10^{4}\ N/C[/tex]
We need to calculate the charge
Using formula of charge
[tex]E=\dfrac{F}{q}[/tex]
[tex]q=\dfrac{mg}{E}[/tex]
Where, E = electric field
m = mass
g = acceleration due to gravity
Put the value into the formula
[tex]q=\dfrac{2.71\times10^{-14}\times9.8}{9.788\times10^{4}}[/tex]
[tex]q=2.71\times10^{-18}\ C[/tex]
Hence, The charge on the drop is [tex]2.71\times10^{-18}\ C[/tex]