Answer:
A). σ = 3.823 x [tex]10^{-5}[/tex] [tex]C^{2}[/tex]/N-[tex]m^{2}[/tex]
B). [tex]\sigma ^{'}=2.76\times 10^{-5}[/tex] C/[tex]m^{2}[/tex]
C). [tex]U=10.322[/tex] J
Explanation:
A). We know magnitude of charge per unit area for a conducting plate is given by
[tex]\sigma =k.\varepsilon _{0}.E[/tex]
where, E is resultant electric field = 1.2 x [tex]10^{6}[/tex] V/m
[tex]\varepsilon _{0}[/tex] is permittivity of free space = 8.85 x [tex]10^{-12}[/tex] [tex]C^{2}[/tex]/N-[tex]m^{2}[/tex]
k is dielectric constant = 3.6
∴[tex]\sigma =k.\varepsilon _{0}.E[/tex]
= 3.6 x 8.85 x[tex]10^{-12}[/tex] x 1.2 x [tex]10^{6}[/tex]
= 3.823 x [tex]10^{-5}[/tex] [tex]C^{2}[/tex]/N-[tex]m^{2}[/tex]
B).Now we know that the magnitude of charge per unit area on the surface of the dielectric plate is given by
[tex]\sigma ^{'}=\sigma\left ( 1-\frac{1}{k} \right )[/tex]
[tex]\sigma ^{'}=3.823\times 10^{-5}\left ( 1-\frac{1}{3.6} \right )[/tex]
[tex]\sigma ^{'}=2.76\times 10^{-5}[/tex] C/[tex]m^{2}[/tex]
C).
Area of the plate, A = 2.5 [tex]cm^{2}[/tex]
= 2.5 x [tex]10^{-4}[/tex][tex]m^{2}[/tex]
diameter of the plate, d = 1.8 mm
= 1800 m
∴ Total energy stored in the capacitor
[tex]U=\frac{1}{2}k\varepsilon _{0}E^{2}Ad[/tex]
[tex]U=\frac{1}{2}\times 3.6\times8.85 \times10^{-12}\times\left ( 1.2\times 10^{6} \right ) ^{2}\times 2.5\times 10^{-4}\times 1800[/tex]
[tex]U=10.322[/tex] J