Respuesta :

gmany

Answer:

C. 0 < a < 1

Step-by-step explanation:

[tex]\text{For}\ f(x)=a^{(x+h)}+k\\\\\text{always}\ a>0\\\\\text{If}\ a>1,\ \text{then the function is  increasing}\\\\\text{If}\ 0<a<1,\ \text{then the function is decreasing}\\\\<-h,\ k>-\text{translation vector}\\\\============================[/tex]

[tex]\text{From the graph:}\\\\\text{the function is decreased}\to 0<a<1\\\\h<0\\\\k>0[/tex]

Ver imagen gmany

Answer:

The correct answer is: Option: C

              C.  0<a<1

Step-by-step explanation:

We are given a graph of a exponential function as:

             [tex]f(x)=a^{x+h}+k[/tex]

We know that the function is a exponential decay function if: 0<a<1

and it represents a exponential growth function if: a>1

Hence, by looking at the graph we observe that the graph is continuously decreasing with increasing values of x.

This means that the graph is a graph of exponential decay function.

Hence, we get:   0<a<1