Respuesta :
Answer:
B. sin35/9=sin40/b
Step-by-step explanation:
The law of sines tells you ...
sin(A)/a = sin(B)/b
Filling in the given values, you get ...
sin(35°)/9 = sin(40°)/b
Answer:
B.[tex]\frac{sin 35}{9}=\frac{sin 40 }{b}[/tex]
Step-by-step explanation:
We are given that in a triangle ABC. [tex]m\angle =35^{\circ}[/tex]
[tex]m\angle B=40^{\circ}[/tex]
a=9
We have to find an equation which solve for b
We know that a sine law
[tex]\frac{a}{sine A}=\frac{b}{sinB}=\frac{c}{sinC}[/tex]
Using above formula of sine law
Substituting all given values in the above formula of sine law
Then we get
[tex]\frac{9}{sin 35}=\frac{b}{sin 40}[/tex]
By cross multiply then we get
[tex]sin 40\times 9=sin35 \times b[/tex]
[tex] \frac{sin 40 \times 9}{b}= sin 35[/tex]
Using division property of equality
[tex]\frac{ sin 40}{b}=\frac{sin 35}{9}[/tex]
Using division property of equality
Hence, option B is true option for solving b.
Answer:B.[tex]\frac{sin 35}{9}=\frac{sin 40 }{b}[/tex]