contestada

In triangle ABC, mA=35, mB=40, and a=9. Which equation should you solve for b?
A. sin35/b=sin40/9
B. sin35/9=sin40/b
C. cos35/9=cos40/b
D.b sqaure=9 square-2(9)bcos40

Respuesta :

Answer:

  B.  sin35/9=sin40/b

Step-by-step explanation:

The law of sines tells you ...

  sin(A)/a = sin(B)/b

Filling in the given values, you get ...

  sin(35°)/9 = sin(40°)/b

Answer:

B.[tex]\frac{sin 35}{9}=\frac{sin 40 }{b}[/tex]

Step-by-step explanation:

We are given that in a triangle ABC. [tex]m\angle =35^{\circ}[/tex]

[tex]m\angle B=40^{\circ}[/tex]

a=9

We have to find an equation  which solve for b

We know that a sine law

[tex]\frac{a}{sine A}=\frac{b}{sinB}=\frac{c}{sinC}[/tex]

Using above formula of sine law

Substituting all given values in the above formula of sine law

Then we get

[tex]\frac{9}{sin 35}=\frac{b}{sin 40}[/tex]

By cross multiply then we get

[tex]sin 40\times 9=sin35 \times b[/tex]

[tex] \frac{sin 40 \times 9}{b}= sin 35[/tex]

Using division property of equality

[tex]\frac{ sin 40}{b}=\frac{sin 35}{9}[/tex]

Using division property of equality

Hence, option B is true option for solving b.

Answer:B.[tex]\frac{sin 35}{9}=\frac{sin 40 }{b}[/tex]

Ver imagen lublana