Respuesta :

ANSWER

[tex]9(\pi - \frac{ \sqrt{3} }{2} )[/tex]

Approximately, A=20

EXPLANATION

The circle has radius r=3 units.

The height of the triangle is ,

[tex]h = 6 \cos(60 \degree) = 3[/tex]

The base of the triangle is

[tex]b = 6 \sin(60 \degree) = 3 \sqrt{3} [/tex]

The area of the triangle is

[tex] \frac{1}{2} bh[/tex]

[tex] = \frac{1}{2} \times 3 \sqrt{3} \times 3[/tex]

[tex] = \frac{9}{2} \sqrt{3} [/tex]

The area of the circle is

[tex]\pi {r}^{2} [/tex]

[tex] = {3}^{2} \pi[/tex]

[tex] = 9\pi[/tex]

The difference between the area of the circle and the triangle is

[tex]9\pi - \frac{9}{2} \sqrt{3} = 9(\pi - \frac{ \sqrt{3} }{2} )[/tex]

Answer:

Difference = 20.47 square  units

Step-by-step explanation:

Points to remember

Area of circle = πr²

Where r - Radius of circle

Area of triangle = bh/2

Where b - Base and h- Height

It is given a circle with radius 3 units

And a right angled triangle with angles 30, 60 and 90 and hypotenuse = 6 units

To find the area of circle

Here r = 3 units

Area =  πr²

 = 3.14 * 3 * 3

 = 28.26 square units

To find the area of triangle

Here sides are in the ratio Base : Height : hypotenuse = 1 : √3 : 2

 = Base :  Height : 6

 = 3 : 3√3 : 6

Base b = 3 and height h  = 3√3

Area = bh/2

 = (3 * 3√3)/2

 = 7.79 square units

To find the difference

Difference = 28.26 - 7.79

 = 20.47 square  units