Respuesta :

Tucon

 

[tex]\displaystyle\\ \sqrt{2}=2^{^\frac{1}{2}}\\\\\sqrt[3]{2}=2^{^\frac{1}{3}}\\\\\frac{\sqrt{2}}{\sqrt[3]{2}}=\frac{2^{^\frac{1}{2}}}{2^{^\frac{1}{3}}}=2^{^{\frac{1}{2}-\frac{1}{3}}}=2^{^{\frac{3-2}{6}}}=2^{^{\frac{1}{6}}}=\boxed{\sqrt[\b6]{2}}[/tex]

Answer:

[tex]\sqrt[6]{2}[/tex]

Step-by-step explanation:

write the equivalent expression for [tex]\frac{\sqrt{2}}{\sqrt[3]{2}}[/tex]

to simplify it we need to rationalize the denominator

we multiply top and bottom by  [tex]\sqrt[3]{4}[/tex]

[tex]\frac{\sqrt{2}*\sqrt[3]{4}}{\sqrt[3]{2}*\sqrt[3]{4}}[/tex]

[tex]\frac{\sqrt{2}*\sqrt[3]{4}}{\sqrt[3]{8}}[/tex]

[tex]\frac{\sqrt{2}*\sqrt[3]{4}}{2}[/tex]

square root can be written as 1/2  and then cube root can be written as 1/3

[tex]\sqrt[3]{4} =2^\frac{2}{3}[/tex]

[tex]\frac{\sqrt{2}*\sqrt[3]{4}}{2}[/tex]

[tex]\frac{2^\frac{1}{2}*2^\frac{2}{3}}{2}[/tex]

Now add the fractions [tex]\frac{1}{2} + \frac{2}{3} =\frac{3}{6} + \frac{4}{6}=\frac{7}{6}[/tex]

[tex]\frac{2^\frac{7}{6}}{2}[/tex]

[tex]\frac{\sqrt[6]{2^7}}{2}[/tex]

[tex]\frac{2\sqrt[6]{2}}{2}[/tex]

cancel out 2 at the top and bottom

[tex]\sqrt[6]{2}[/tex]