Answer:
Option B. [tex]865.8\pi\ cm^{2}[/tex]
Step-by-step explanation:
we know that
The surface area of the cone is equal to
[tex]SA=\pi r^{2} +\pi rl[/tex]
we have
[tex]r=13\ cm[/tex]
[tex]h=52\ cm[/tex]
Find the slant height l
Applying Pythagoras \theorem
[tex]l^{2}=r^{2} +h^{2}[/tex]
substitute the values
[tex]l^{2}=13^{2} +52^{2}[/tex]
[tex]l^{2}=2,873[/tex]
[tex]l=53.6\ cm[/tex]
Find the surface area
[tex]SA=\pi(13)^{2} +\pi(13)(53.6)=865.8\pi\ cm^{2}[/tex]