Respuesta :
Answer: Option D.
Step-by-step explanation:
You can observe that the dimensions of the bedroom in the scale drawing are:
[tex]length=2"\\width=1.5"[/tex]
You know that [tex]\frac{1}{2}"=3feet[/tex]
Then you need to convert these dimensions to the actual dimensions. So, you get:
[tex]actual\ lenght=\frac{(2")(3ft)}{\frac{1}{2}" }=12ft\\\\actual\ width=\frac{(1.5")(3ft)}{\frac{1}{2}" }=9ft[/tex]
Therefore, you can calculate the actual area of the bedroom. This is:
[tex]Area=(actual\ lenght)(actual\ width)\\Area=(12ft)(9ft)\\Area=108ft^2[/tex]
Answer:
Option D.
Step-by-step explanation:
From the given figure it is clear that
Length of the bedroom in scale drawing = 2''
Width of the bedroom in scale drawing = 1.5''
It is given that
Scale [tex]\frac{1}{2}''=3feet[/tex]
[tex]1''=6feet[/tex]
Using this conversion we get
[tex]2''=12feet[/tex]
[tex]1.5''=9feet[/tex]
Actual length of the bedroom = 12 feet
Actual width of the bedroom = 9 feet
Area of a rectangle is
[tex]Area=length\times width[/tex]
Actual area of the bedroom is
[tex]Area=12\times 9[/tex]
[tex]Area=108[/tex]
The actual area of the bedroom is 108 ft2.
Therefore, the correct option is D.