Factorize the denominator:
[tex]\dfrac{x^2-4}{x^3+x^2-4x-4}=\dfrac{x^2-4}{x^2(x+1)-4(x+1)}=\dfrac{x^2-4}{(x^2-4)(x+1)}[/tex]
If [tex]x\neq\pm2[/tex], we can cancel the factors of [tex]x^2-4[/tex], which makes [tex]x=-2[/tex] and [tex]x=2[/tex] removable discontinuities that appear as holes in the plot of [tex]g(x)[/tex].
We're then left with
[tex]\dfrac1{x+1}[/tex]
which is undefined when [tex]x=-1[/tex], so this is the site of a vertical asymptote.
As [tex]x[/tex] gets arbitrarily large in magnitude, we find
[tex]\displaystyle\lim_{x\to-\infty}g(x)=\lim_{x\to+\infty}g(x)=0[/tex]
since the degree of the denominator (3) is greater than the degree of the numerator (2). So [tex]y=0[/tex] is a horizontal asymptote.
Intercepts occur where [tex]g(x)=0[/tex] ([tex]x[/tex]-intercepts) and the value of [tex]g(x)[/tex] when [tex]x=0[/tex] ([tex]y[/tex]-intercept). There are no [tex]x[/tex]-intercepts because [tex]\dfrac1{x+1}[/tex] is never 0. On the other hand,
[tex]g(0)=\dfrac{0-4}{0+0-0-4}=1[/tex]
so there is one [tex]y[/tex]-intercept at (0, 1).
The domain of [tex]g(x)[/tex] is the set of values that [tex]x[/tex] can take on for which [tex]g(x)[/tex] exists. We've already shown that [tex]x[/tex] can't be -2, 2, or -1, so the domain is the set
[tex]\{x\in\mathbb R\mid x\neq-2,x\neq-1,x\neq2\}[/tex]