Answer:
Step-by-step explanation:
The standard form of an equation of a line:
[tex]Ax+By=C[/tex]
The point-slope form of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
m - slope
(x₁, y₁) - point
We have the point (6, 2) and the slope m = -1/2. Substitute:
[tex]y-2=-\dfrac{1}{2}(x-6)[/tex]
Convert to the standard form:
[tex]y-2=-\dfrac{1}{2}(x-6)[/tex] multiply both sides by 2
[tex]2y-4=-(x-6)[/tex]
[tex]2y-4=-x+6[/tex] add 4 to both sides
[tex]2y=-x+10[/tex] add x to both sides
[tex]x+2y=10[/tex]