Respuesta :

Answer:

[tex]4x^{4}[/tex]

Step-by-step explanation:

Given in the question an expression,

[tex](256x^{16})^\frac{1}{4}[/tex]

As we know that,

[tex]x^{\frac{1}{4} }= \sqrt[4]{x}[/tex]

so

[tex]\sqrt[4]{256x^{16} }[/tex]

it could also be written as

[tex]\sqrt{\sqrt{256x^{16} } }[/tex]

First to solve inner square root

[tex]\sqrt{256x^{16} } = 16x^{16/2}[/tex]

[tex]\sqrt{16x^{8} }[/tex]

Second outer square root

[tex]\sqrt{16x^{8}}=4x^{8/2}[/tex]=[tex]4x^{4}[/tex]