Respuesta :

Answer:

The area of shaded region is 226.4 meter squared.

Step-by-step explanation:

Radius of the circle = r =18.6 m

Angle subtended by chord[tex]\theta = 123^o[/tex]

Area of  sector = [tex]\frac{\theta }{360^o}\pi r^2[/tex]

In ΔOAB

∠A+∠B+∠O= 180°

2∠A+123°= 180°(∠A=∠B, isosceles triangle)

∠A=∠B=28.5°

AC=BC (Radius of the circle  bisects the chord at right angle.)...(1)

In ΔOAC

[tex]\sin 123^0=\frac{OC}{OA}[/tex]

OC = 8.87 m

[tex]\cos 123^0=\frac{AC}{OA}[/tex]

AC = 16.34 m

AB = AC+AB=16.34 m+16.34 m=32.68 m (from (1))

Area of the ΔOAB = [tex]\frac{1}{2}\times OC\times AB[/tex]

=[tex]\frac{1}{2}\times 8.87 m\times 32.68 m=144.93 m^2[/tex]

Area of segment = Area of sector - Area of triangle:

[tex]371.34 m^2-144.93 m^2=226.41 m^2\approx 226.4 m^2[/tex]

The area of shaded region is 226.4 meter squared.

Ver imagen Tringa0